VitroScreen EXPERTISE ON MICROBIOME:

commitment to provide scientific evidences for new generation products

> VitroScreen within its mission for **excellence in** *in vitro* science has developed specialized 3D reconstructed human skin and mucosae models colonized with site specific associated microbiome and yeasts.

MICROBIOTA MODULATES CUTANEOUS AND MUCOSAL RESPONSE

Microbiota colonized skin and mucosae models allow to explore microbe-host interaction mechanisms and to quantify tissue response against pathogens.

GMS staining on 3D human reconstructed epithelium colonized by Candida albicans

BACTERIAL AND YEAST ADHESION AND BIOFILM FORMATION

Colonized tissue models enable to investigate microbial species proliferation, adhesion, growth, toxicity and biofilm formation thanks to a Multiple Endpoint Approach (MEA).

SEM analysis of S.aureus invading the surface of a skin with impaired barrier

PROBIOTICS, PREBIOTICS AND POSTBIOTICS EFFICACY

3D models co-colture with immune-competent cells: a unique tool to assess innate and adaptive immuno-mediated responses induced by bacteria and bacterial components.

THP 1 cells infiltrated in RHE-CMM inserts and differentiated (CD86 IF staining)

SKIN MICROBIOTA: S. epidermidis and S. aureus

Competition models between commensal species interacting with opportunistic pathogen members of the microbiota are fundamental to explore the mechanisms by which a product can modulate bacterial behavior on skin surface.

SEM image of reconstructed epidermis surface previously colonized by *S. epidermidis* where *S. aureus* is no more able to form a biofilm.

RECAPITULATING THE ROLE of SCALP MICROBIOTA

In a realistic scalp model in presence of sebum, supporting dandruff condition, *P. acnes* has been shown to counteract the invasion of *M. restricta.*

SEM analysis of co-colonization with P. acnes and M. restricta

contact: infos@vitroscreen.com

